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Abstract

Semiparametric additive accelerated life models are studied when failure times are subject to
multistage progressive Type I censoring. At pre-determined times tj , j = 1, 2, . . . , m, Rj items
are removed by the experimenter. The number Rj can be a pre-determined number or can be
a pre-determined proportion of the items still functioning at tj . In this paper, the martingale
approach is taken to model the underlying counting processes. Large sample results are obtained
for both progressively censored cases.

1 Introduction

Bagdonavičius and Nikulin (1999) have developed a unified approach to modeling failure time distributions
when the items are subject to various stresses. In particular, if item i is subject to stress z, a function of
time t, the resulting failure time distribution function Sz is assumed to satisfy

H ◦ Sz(t) = H ◦ S0(t) +
∫ t

0

a(z(s)) ds. (1)

Here S0 is an unknown baseline survival function. The function H is called the reliability generator; the
inverse function H−1 is the resource. If a(z(s)) = β′z(s), with β equal to a p-vector of unknown regression
parameters, then one obtains a semiparametric additive accelerated life models as studied by Bordes (1999).

For example, if H−1(u) = exp(−uγ) is the Weibull resource, then Sz(t) = exp{−[(− log S0(t))1/γ +∫
β′z(s)ds]γ}, giving a cumulative hazard function Λz(t) = [(Λ0(t))1/γ +

∫
β′z(s)ds]γ .

One of the aims in using such a model is to reduce the total time on test. In product testing, the cost of
items to be tested may be high, the cost of running the test may be high, or the use of the testing facilities
may be limited. Thus, by subjecting the test items to additional stresses, their lifetimes will be decreased.
Inference about their original lifetime distribution can be obtained via (1). Another aim is to model the
effects of different stresses that may occur in actual use.

In addition, accurate estimation of the left tail of the survival distribution is very important. To further
reduce the total time on test, the experimenter can start with a large number of items. After a given period
of time, say t1, the experimenter would remove a number of functioning items from the test. Deliberate
removal would be done at random and would only depend on the number of items still functioning at time
t1 and not on their subsequent survival times. This process of removal can occur at a finite number of times,
tj , j = 1, . . . , k. For example, t1 may be the warranty time of the product, that is, the maximum time when
the customer can claim a full refund if the product fails. Time t2 could be the maximum time for subsequent
partial warranties, for example, those that cover parts but not labor. In addition, an experimenter may wish
to remove a small number of items at other fixed times tj in order to study the amount of wear. These
removed items may be dissassembled and components may be subject to destructive testing.

The above (removal) censoring scheme is an instance of progressive multistage Type I censoring. Bal-
akrishnan and Aggarwala studied progressive censoring schemes. They concentrated on Type II censoring
where removal takes place at an order statistic of the failure time data. Their emphasis was on quantile
estimation, estimation in parametric models and the order statistic properties of the data.



In reliability the experimenter can decide on the amount of stress z given to an item. The stresses can be
considered nonrandom, but may be time dependent and are assumed to be left continuous. Suppose there
are k different stresses, zi(t), 1 ≤ i ≤ k, in the experiment. The number of items subjected to stress zi is
equal to ni and the failure time of the jth item in that group is labelled Tij . Each item may be subject to
random right censorship by Lij . Such is the case when an item may accidentally be destroyed or missing.
We assume the independence of {Tij} and {Lij}.

In addition to the above random censoring by Lij , at pre-determined times ti`, where ti1 < ti2 < . . . <
timi , Ri` items are removed by the experimenter. We will consider two progressive censoring schemes:
Scheme 1 : At time ti`, randomly remove [ni`pi`] of the items that are still functioning, where ni` is the
number still functioning.
Scheme 2 : At time ti`, randomly remove Ri` of the items that are still functioning.

Under both schemes, removal of items depends only on the set of indices of the items that are still
functioning and not on their subsequent failure times. If item (i, j), (item j from group i) is removed at time
ti` according to progressive scheme r, r = 1, 2, put C

(r)
ij = ti`. If item (i, j) is not progressively censored by

scheme r at any of the times ti`, we can put C
(r)
ij = τSi

, where τSi
= inf{t : Szi

(t) = 0}. We observe

X
(r)
ij = Tij ∧ Lij ∧ C

(r)
ij

as well as I
[X

(r)
ij =Tij ]

, I
[X

(r)
ij =Lij ]

, and I
[X

(r)
ij =C

(r)
ij ]

.
In this paper, the martingale approach is taken to model the underlying counting processes. Estimation

of the unknown parameter β and of the baseline survival function S0 is studied. Large sample results are
obtained for both progressive censoring cases. In particular, it is shown that on a single probability space,
the relevant martingales for the two progressive Type I schemes are asymptotically equivalent to the corre-
sponding martingales under a scheme based on independent random right censoring. Thus, weak convergence
results proved for independent random right censoring can be used to deduce those for progressively censored
data. Some examples are given.

2 Estimation and Large Sample Theory

2.1 Martingale Results
Bordes (1999) considered the martingale

Mij(t) = Nij(t)−
∫ t

0

[ρ′0(t)ψ(Si(t))Yij(t)− ψ(Si(t))Yij(t)β′zi(t))]dt, (2)

where Si = Szi , Nij(t) = I[Tij≤t, Tij≤Lij ]; Yij(t) = I[Tij≥t, Lij≥t], ρ0(t) = H ◦ S0(t), and ψ(u) =
−(H−1)′(H(u))/u.

For r = 1, 2, let
Y

(r)
ij (t) = I

[X
(r)
ij ≥t]

.

Then, the process incorporating both the random censoring above and progressive censoring scheme r can
be represented as:

M
(r)
ij (t) =

∫ t

0

Y
(r)
ij (s)Mij(ds), (3)

which is (2) with Yij replaced by Y
(r)
ij .

Theorem 1. M
(r)
ij is a martingale.

Consider the partial likelihood score function (see Bordes (1999), Bagdonavičius and Nikulin (1995), Lin
and Ying (1994, 1995))

U (r)(β, τ) =
k∑

i=1

∫ τ

0

J (r)(t){zi(t)− z(t, S̃(r)(t))}M̃ (r)
i (β, dt);



M̃
(r)
i (β, dt) = N

(r)
i (dt)− β′zi(t)Y

(r)
i (t)ψ(S̃(r)

i (t))dt,

with

z(t,x) =
∑k

i=1 zi(t)Y
(r)
i (t)ψ(xi)∑k

i=1 Y
(r)
i (t)ψ(xi)

and x = (x1, . . . , xk), S̃(r) = (S̃(r)
i , . . . , S̃

(r)
i ) is the vector of product limit estimators of the survival function

Si.
Solving for β in U (r)(β, τ) = 0, one obtains

β̂(r) =

(
k∑

i=1

∫ τi

0

J (r)(t){zi(t)− z(t, S̃(r)(t))}⊗2Y
(r)
i (t)ψ(S̃(r)

i (t))dt

)−1

×
k∑

i=1

∫ τi

0

J (r)(t){zi(t)− z(t, S̃(r)(t))}N (r)
i (dt),

where Si(τi) > 0, x⊗2 = xx′.
For scheme 2, let

pi` =
ri`

S(ti`)

(
1−

`−1∑

`′=1

ri`′

S(ti`′)

)−1

,

For both schemes, we will assume

0 ≤ pi` < 1, for 1 ≤ i ≤ k, 1 ≤ ` ≤ m. (4)

The following two theorems parallel those of Bordes (1999), who proved them under random right censoring.
Theorem 2. Then, under conditions (4) and A1-A5 of Bordes (1999), as n tends to infinity,

√
n(β̂(r) − β0)

is asymptotically normal with mean zero and covariance matrix Σ, r = 1, 2.
Theorem 3. Under the conditions above, as n tends to infinity,

√
n(Ŝ(r)

i − Si) →D ξ in D[0, τi],

where ξ is a mean-zero Gaussian process, where

Ŝ
(r)
i (t) = H−1

(
Ĥ ◦ S0(t) +

∫ t

0

β̂(r)′z(u)du

)

and Ĥ ◦ S0 is a baseline estimate of H ◦ S0, using the estimator β̂(r).

2.2 Progressive Censoring Mechanism
One way to represent these schemes is to consider, for each item (i, j), m independent uniform (0, 1) random
variables, Uij`, ` = 1, 2, . . . ,m, which are independent of the sequences {Tij} and {Lij}. We will define the
censoring random variables C

(r)
ij for each scheme r, r = 1, 2.

Let ρ
(r)
i (t`, ω) = {j : t` < Tij(ω), C

(r)
ij (ω) ≮ t`} denote the risk set of the items under censoring scheme

r at time t`, 1 ≤ ` ≤ m. Let nri` = #ρ
(r)
i (t`) denote the number of such items.

Scheme 1: For r = 1, item (i, j) ∈ ρ
(1)
i (t`) is removed, that is, C

(1)
ij = t`, if Uij` ≤ U([n1i`p`]), where U([n1i`p`])

is the [n1i`p`]-order statistic from the set {Uij` : i ∈ ρ
(1)
i (t`, ω)}. Put C

(1)
ij = τSi , if item (i, j) is not censored

under scheme 1.
Scheme 2: For r = 2, item (i, j) ∈ ρ

(2)
i (t`, ω) is removed, that is, C

(2)
ij = t`, if Uij` ≤ U(R`), where U(R`) is

the R`th-order statistic from the set {Uij` : i ∈ ρ
(2)
i (t`, ω)}. Put C

(2)
ij = τSi , if item (i, j) is not censored

under scheme 2.



Then, the resulting N
(r)
ij (t) = I[Tij ≤ t, Tij ≤ C

(r)
ij ∧ Lij ], Y

(r)
ij (t) = I[Tij ∧ C

(r)
ij ∧ Lij ≥ t] and M

(r)
ij ,

defined by (3), j = 1, 2, . . . , ni, i = 1, 2, . . . k, have the required joint distributions for scheme r, r = 1, 2.
We introduce a third scheme, which is a random censoring scheme, based on independent random variables

C
(3)
ij , having discrete probability mass function

P [C(3)
ij = t1] = pi1

P [C(3)
ij = t`] = pi`

`−1∏

`′=1

(1− pi`′), ` = 2, . . . , m

P [C(3)
ij = τSi

] = 1−
m∑

`=1

P [C(3)
ij = t`]

and define N
(3)
ij (t) = I[Tij ≤ t, Tij ≤ C

(3)
ij ∧ Lij ], Y

(3)
ij (t) = I[Tij ∧ C

(3)
ij ∧ Lij ≥ t], j = 1, 2, . . . , ni,

i = 1, 2, . . . k, as above (r = 3). In terms of the above construction,
Scheme 3: For r = 3, item (i, j) ∈ ρ

(3)
i (t`, ω) is removed, that is, C

(3)
ij = t`, if Uij` ≤ pi`. Otherwise, put

C
(3)
ij = τSi

.
Theorems 1-3 will follow from: Under the conditions above,

sup
0≤t≤τSi

∣∣∣∣∣
Σni

j=1Y
(r)
ij (t)

n
− Σni

j=1Y
(3)
ij (t)

n

∣∣∣∣∣ =a.s. o(n−1/2+ε), r = 1, 2

and
n−1/2 sup

0≤t≤τSi

∣∣∣D(r)
n (t)

∣∣∣ →P 0,

where

D(r)
n (t) =

ni∑

j=1

(M (r)
ij (t)−M

(3)
ij (t)), r = 1, 2.

Also, from Burke (2004), for the product limit estimators,

sup
t≤τi

√
ni

∣∣∣S̃(r)
i (t)− S̃

(3)
i (t)

∣∣∣ →P 0.
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